Учебно-методическое пособие Мероприятие 2






НазваниеУчебно-методическое пособие Мероприятие 2
страница2/5
Дата публикации22.04.2015
Размер0.64 Mb.
ТипУчебно-методическое пособие
d.120-bal.ru > Документы > Учебно-методическое пособие
1   2   3   4   5
Тема: «Организация и оборудование биотехнологической лаборатории, правила работы в ней»

Материалы и оборудование:

Химические стаканы (50, 100, 250 мл), штативы с пробирками, инструменты (пинцеты, скальпели, ножницы, препарировальные иглы), моющие средства, (стиральный порошок), хромпик, гипохлорит натрия.
Ход работы.

1. Ознакомиться с устройством биотехнологической лаборатории.

2. Под руководством преподавателя освоить принципы работы автоклава, сушильного шкафа, дистиллятора и другого вспомогательного оборудования.

3. Посуду замочить в растворе гипохлорита натрия, тщательно отмыть в растворах детергентов (стиральный порошок), промыть 8-10 раз проточной водой, поместить на 4-6 часов в хромпик (смесь серной кислоты с бихроматом калия), промыть теплой водой, затем дважды дистиллированной.

4. Чистую посуду поместить в сушильный шкаф на 2 часа при температуре 100-130оС.

5. Сухую посуду для хранения закрыть ватными пробками, фольгой, целлофаном.
Контрольные вопросы к теме 1.

1. Как устроена биотехнологическая лаборатория?

2. Как простерилизовать питательные среды, посуду, дистиллированную воду, инструменты?

3. Как происходит стерилизация помещения лаборатории?

3. Разнообразие и приготовление питательных сред
3.1. Типы питательных сред и обзор их составов

В зависимости от вида растений необходимо испытывать как твердые (агаризованные), так и жидкие питательные среды. Иногда жидкие среды имеют преимущество, так как обеспечивают большую подвижность трофических элементов. Например, при размножении роз более успешным было культивирование побегов на двухслойной питательной среде: нижний слой – агаризованный, верхний – жидкий. На эффективность размножения могут также влиять расположение экспланта (горизонтальное или вертикальное), тип пробок (ватные, пластмассовые, стеклянные, металлические и т.д.), а также соотношение объема эксплантов и количества питательной среды для оптимального освещения и газообмена эксплантов.

Состав питательной среды необходимо подбирать для каждого вида растений. На микроклональное размножение влияют гормоны, минеральные соли, витамины и углеводы. При размножении in vitro часто используют среды Мурасиге и Скуга, Гамборга, Хеллера и другие. Обычно используют среду Мурасиге–Скуга (MS), которая содержит много неорганического азота, что стимулирует процессы органогенеза и соматического эмбриогенеза. Вопрос оптимального соотношения NH4 - NO3 остается открытым, так как литературные данные весьма противоречивы и универсального рецепта для всех видов растений нет. В качестве источника углеродного питания используют различные углеводы типа сахарозы, глюкозы, фруктозы, галактозы. Разные культуры требуют различной концентрации углеводов на разных этапах микроклонального размножения.

Компоненты среды для выращивания растительных клеток и тканей можно разделить на 6 основных групп, что обычно отражает порядок приготовления концентрированных маточных растворов: макроэлементы, микроэлементы, источники железа, витамины, источники углерода, фитогормоны.

Основой для всех питательных сред для культивирования растительных эксплантов является смесь минеральных солей. Это соединения азота в виде нитратов, нитритов, солей аммония; фосфора – в виде фосфатов; серы – в виде сульфатов; а также растворимых солей К+, Na+, Са++, Мg++. Железо используется в виде хелатов [FeО4 или Fe2O4 + ЭДТА (этилендиаминтетрауксусная кислота) или её натриевая соль Na ЭДТА (трилон Б)] – наиболее доступной форме для усвоения растительными тканями.

Азот, фосфор, сера входят в состав органических соединений: белков, жиров, нуклеиновых кислот. Железо, цинк, марганец, молибден, кобальт в сочетании с порфиринами образуют макромолекулы пигментов фотосинтеза (хлорофилла), окислительно-восстановительных ферментов (каталазы, пероксидазы, полифенолоксидазы). Следовательно, все эти соединения выполняют в клетках и тканях структурную функцию. В то же время ионы К+, Na+, Са++, Cl –, Н + необходимы для регуляции pH среды и поддержания физиологических градиентов клеток (тургора, осмотического давления, полярности).

В качестве источника углерода для биологических макромолекул, а также при культивировании гетеротрофных тканей (каллусов и суспензий) в питательные среды добавляют углеводы в концентрации 20-60 г/л. Обычно это дисахариды (сахароза), моносахариды (гексозы: глюкоза и фруктоза, пентозы: ксилоза и другие). Полисахариды в питательных средах практически не используются. Только некоторые типы тканей (опухолевые), содержащие гидролитические ферменты, выращивают на средах с крахмалом, рафинозой, целлобиозой.

Для стимуляции биохимических реакций в клетке используют биологиче-ские катализаторы – витамины группы В (В1, В6, В12), С (аскорбиновую кислоту), РР (никотиновую кислоту), мезоинозит.

Тиамин (В1) входит в состав пируватдекарбоксилазы, участвует в превращениях углеводов. Тиаминпирофосфат входит в состав ферментов окислительного декарбоксилирования кетокислот (пировиноградной и кетоглутаровой), является коферментом транскетолазы.

Пиридоксин (В6) в виде фосфорнркислого эфира входит в состав ферментов декарбоксилирования и переаминирования аминокислот.

Никотиновая кислота (РР) в виде амида входит в состав дегидрогеназ НАД и НАДФ, катализирующих донорно-акцепторную цепь Н+ (отнятие Н+ от молекул органических веществ).

Для управления процессами формообразования в культуре тканей необходимы биологические регуляторы роста и развития – фитогормоны. Эти вещества влияют на дифференциацию и дедифференциацию клеток и тканей, инициируют гистогенез, индуцируют деление и растяжение клеток, участвуют в процессах старения и созревания, либо стимулируют, либо ингибируют рост и развитие клеточных культур, обуславливают формирование пола. В биотехнологических исследованиях чаще используют гормоны, стимулирующие рост и развитие: ауксины, цитокинины, гиббереллины.

Ауксины: ИУК – индолил-3-уксусная кислота, ИМК – индолил-3-масляная кислота, НУК – нафтилуксусная кислота, 2,4-Д – 2,4-дихлорфенокси-уксусная кислота.

Цитокинины: кинетин – 6-фурфуриламинопурин, зеатин, NN-дифенил-мочевина, 6-БАП – 6-бензиламинопурин.

Гиббереллины: гиберрелловая кислота.

В качестве биологических добавок для индукции первичного каллуса можно использовать растительные экстракты (10-15 % от общего объёма среды): кокосовое молоко (жидкий эндосперм кокосового ореха), вытяжки из незрелых зерновок кукурузы (лучше в период молочной спелости), которые содержат цитокинины – кинетин и зеатин (6-ти замещенные аминопурины) и NN-дифенилмочевину.

В культуре in vitro применяют жидкие и агаризованные (твердые) среды. Жидкие среды используются для культивирования суспензий, каллусов, изолированных органов и тканей, растений-регенерантов. При этом для поддержания эксплантов в пробирки со средой помещают специальные мостики-поддержки из фильтровальной бумаги или синтетических пористых материалов.

Агаризованные среды готовят на основе агар-агара – полисахарида, входящего в состав морских водорослей, который образует с водой гель при pH 5,6-6,0. Иногда в качестве уплотнителя и заменителя агар-агара используют полиакриламидные гели (биогели) P10 и P200.

Для искусственных питательных сред растворы макро- и микросолей готовят заранее и используют многократно. Это маточные (концентрированные) растворы. Их хранят в специальных условиях: макро- и микросоли в холодильнике в сосудах с притертыми пробками при 0…+4оС; витамины, фитогормоны, ферменты, растительные экстракты – при -20оС в небольших по 5-10 мл сосудах с пробками (пеницилловые флаконы).

Маточные растворы макросолей обычно превосходят рабочие по концентрации в 10-40 раз, микросолей – в 100-1000 раз, витаминов – в 1000 раз.

Растворы фитогормонов желательно готовить непосредственно перед работой со средами.

Для приготовления маточного раствора макро- и микросолей каждую соль растворяют в отдельном стаканчике при нагревании, затем сливают и доводят до нужного объема. В охлажденную смесь микросолей последним добавляют раствор солей молибдена, а в макросоли – раствор солей магния (для предотвращения выпадения осадка).

Маточные растворы хлористого кальция и хелата железа (сернокислое железо + ЭДТА, либо Na ЭДТА – трилон Б) готовят и хранят отдельно от других солей.

Концентрированные растворы витаминов готовят следующим образом: 10-кратные навески растворяют в 10 мл дистиллированной воды каждый отдельно.

Фитогормоны – это вещества, которые плохо растворяются в воде. Поэтому предварительно 100 мг вещества растворяют в небольших количествах (0,5-2,0 мл) спирта (ауксины, гиббереллины), 0,5-1 н HCl или КОН (цитокинины), затем подогревают до полного растворения (кроме абсцизовой кислоты и кинетина) и доводят до 100 мл объема (1 мл содержит 1 мг вещества).

Таблица 1

Прописи основных питательных сред используемых при микроклональном размножении растений

Компонент

Состав питательных сред, мг/л

Knudson С

Murashige & Skoog

Harvais I A

Van Waes & Deberg

BM 1

BM 2

Ca(NO3)2 *4H2О

1000




400







(NH 4)2SO4

500













KN03




1900

200







CaCl2 *2H 2 О




440










NH4NO3




1650

400







КH2РО4

250

170

200

240

240

KCI







100







MgS04*7H2 О

250

370

200

100

100

FeSO4 *7H 2 0

25

27,95




27,95

27,95

Na2ЭДТА




37,23




37,23

37,23

Хелат железа







5 мл







CoCl2 *6 H 2 О




0,025

0,02







ZnSO4 *7Н2О




8,6

0,5

10

10

H3ВО3




6,2

0,5

10

to

MgS04*4H20

7,5

22,3

0,5

25

25

CuS04 *5Н2О




0,025

0,5

0,025

0,025

Na2 МoО4*2Н2О




0,25

0,04

0,25

0,25

KJ




0,83

0,1







Глицин




2




2

2

Мезоинозит




100




1200

1200

Никотиновая кислота




0,5

5

5

5

Тиамин




0,1

5

0,5

0,5

Пиридоксин




0,5

0,5

0,5

0,5

Фолиевая кислота










0,5

0,5

Биотин










0,05

0,05

Гидролизат казеина










500

500

L -глютамин










100

100

6-БАП













0,2

Сахароза

20000

30000




20000

20000

Картофельный экстракт







100 мл







Агар - агар

17500

10000

10000

6000

6000

pH среды

4,8-5,2

5,7

6,0-6,4

5,8

5,8

3.2. Гормональная регуляция в культуре клеток и тканей «in vitro»

Фитогормоны – это биологические регуляторы роста и развития растений, осуществляющие взаимодействие клеток, тканей и органов, стимулирующие и ингибирующие морфогенетические и физиологические процессы в растительных организмах. Фитогормоны влияют на деление и рост клеток растяжением, состояние покоя, созревание, старение, формирование пола, устойчивость к стрессу, тропизмы, транспирацию; обеспечивают функциональную целостность растительного организма, закономерную последовательность фаз индивидуального развития.

По химической природе гормоны растений четко подразделяются на две группы: производные мевалоновой кислоты (гиббереллины, абсцизины, брассины, фузикокцин, цитокинины), производные аминокислот (ауксины –из триптофана, этилен – из метионина и аланина). Биосинтез фитогормонов происходит в определенных частях растений: в апексах побегов образуется ИУК– индолил-3-уксусная кислота, лист служит донором ключевого продукта синтеза гиббереллинов – каурена, а также абсцизовой кислоты, в апексах корней синтезируется кинетин, а в зоне растяжения корня – гиббереллины, источником зеатина является эндосперм прорастающих семян.

По функциональному действию различают 5 основных групп фитогормонов: ауксины, цитокинины, гиббереллины, абсцизины и этилен. Ауксины в культуре тканей вызывают рост клеток растяжением, в больших концентрациях – деление клеток, в сочетании с цитокининами – органогенез. В биотехнологии применяют как природные ауксины (ИУК), так и синтетические [ИМК (индолил-З-масляная кислота), ИПК (индолил-З-пропионовая кисло-та), 2,4-Д (2,4-дихлорфеноксиуксусная кислота), НУК(нафтилуксусная ки-слота)].

Цитокинины в сочетании с ауксинами индуцируют митозы, пролиферацию клеток, почек и побегов. К природным цитокининам относятся: зеатин, кинетин (6-фурфуриламинопурин), NN-дифенилмочевина (кокосовое молоко); к синтетическим – 6-БАП (6-бензиламинопурин).

Гиббереллины стимулируют рост клеток растяжением, а также синтез ауксинов и цитокининов. Сейчас известно около 60 видов гиббереллинов. В культуре ткани используется гибберелловая кислота.

Абсцизины (АБК – абсцизовая кислота) и этилен ингибируют ростовые процессы, деление клеток, в сочетании с цитокининами и хлорхолинхлоридом индуцируют органогенез (образование микроклубней).

Гормональная система тесно связана с генетическим аппаратом клетки. Фитогормоны не только влияют на степень метилирования ДНК и таким образом регулируют экспрессию генов, но и связываются с белками – репрессорами на опероне, что приводит к активации структурных генов и синтезу определенных ферментов. Следовательно, изменяя соотношение гормонов в питательных средах, можно в какой-то степени изменять и генетические программы клеток и тканей. Эти процессы известны как дедифференциация, ре-дифференциация и дифференциация клеток и тканей.

В растении фитогормоны находятся в тесном взаимодействии друг с другом: ИУК индуцирует синтез этилена и цитокининов, ГК увеличивает содержание ИУК, цитокинины усиливают синтез МУК, но снижают содержание свободной АБК, этилен тормозит транспорт ИУК и увеличивает содержание АБК.

В культуре ткани фитогормоны, добавленные в различных пропорциях, регулируют синтез эндогенных гормонов растений, что проявляется в разнообразных морфогенетических реакциях клеток и тканей.

В 1955 г. Скуг и Миллер предложили гипотезу гормональной регуляции в культуре клеток и тканей, которая сейчас известна, как правило Скуга-Миллера: если концентрация ауксинов и цитокининов в питательной среде относительно равны или концентрация ауксинов незначительно превосходит концентрацию цитокининов, то образуется каллус; если концентрация ауксинов значительно превосходит концентрацию цитокининов, то формируются корни; если концентрация ауксинов значительно меньше концентрации цитокининов, то образуются почки, побеги.

Фитогормоны способны изменять проницаемость клеточных мембран. Под действием ауксинов и гиббереллинов усиливается выброс протонов из клетки, что приводит к подкислению клеточной стенки и ослаблению связей между целлюлозными фибриллами в результате частичного кислотного гидролиза пектиновых веществ. Поэтому клеточная стенка становится более эластичной и под действием тургорного давления вакуоли клетка приобретает способность к растяжению.
Лабораторная работа № 2

1   2   3   4   5

Похожие:

Учебно-методическое пособие Мероприятие 2 iconУчебно-методическое пособие и ситуационные задачи по урологии для студентов
...

Учебно-методическое пособие Мероприятие 2 iconУчебно-методическое пособие Иркутск 2000г. Учебно-методическое пособие подготовлено
С. П. Фирсовой – доктором медицинских наук, профессором кафедры общественного здоровья и организации здравоохранения игму

Учебно-методическое пособие Мероприятие 2 iconУчебно-методическое пособие Ставрополь
Учебно-методическое пособие предназначено для студентов очной и заочной формы обучения факультета ветеринарной медицины по специальности...

Учебно-методическое пособие Мероприятие 2 iconУчебно-методическое пособие “лимфатическая и иммунная системы “
Учебно-методическое пособие предназначено для студентов лечебного, педиатрического, медико-профилактического, стоматологического...

Учебно-методическое пособие Мероприятие 2 iconУчебно-методическое пособие для студентов 6-го курса лечебного и...
Учебно-методическое пособие составлено на кафедре неврологии Гродненского государственного медицинского института

Учебно-методическое пособие Мероприятие 2 iconУчебно-методическое пособие Содержание Достижения современной генетики
Данное учебно-методическое пособие составлено в помощь учителям биологии, учащимся старших классов общеобразовательных школ, абитуриентам...

Учебно-методическое пособие Мероприятие 2 iconУчебно-методическое пособие по циклу «поликлиническая педиатрия»...
Учебно-методическое пособие предназначено для студентов, обучающихся по специальности «Педиатрия»

Учебно-методическое пособие Мероприятие 2 iconУчебно-методическое пособие по офтальмологии для студентов
Учебно-методическое пособие по офтальмологии для студентов педиатрического факультета. Ставрополь. Изд: сгма, 2009 г

Учебно-методическое пособие Мероприятие 2 iconУчебно-методическое пособие минск Белмапо
Методическое пособие предназначено для врачей-стоматологов государственных и частных лечебных учреждений. Пособие может быть использовано...

Учебно-методическое пособие Мероприятие 2 iconУчебно-методическое пособие для образовательных учреждений Омск
К 61 Духовно-нравственная культура: учебно-методическое пособие для образовательных учреждений. – Омск : боудпо «ирооо», 2009. –...

Вы можете разместить ссылку на наш сайт:


медицина


При копировании материала укажите ссылку © 2016
контакты
d.120-bal.ru
..На главную